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Introduction: The miniaturized Mössbauer spec-

trometer MIMOS II [1] is an off‐the‐shelf instrument 

with proven flight heritage. It has been successfully 

deployed during NASA’s Mars Exploration Rover 

(MER) mission [2‐4] and was on‐board the UK‐led 

Beagle 2 Mars lander [5] and the Russian Pho-

bos‐Grunt sample return mission [6]. A Mössbauer 

spectrometer has been suggested for ASTEX, a DLR 

Near-Earth Asteroid (NEA) mission study [7], and the 

potential payload to be hosted by the Asteroid Redirect 

Mission (ARM) [8]. Here we make the case for in situ 

asteroid characterization with Mössbauer spectroscopy 

on the ARM employing one of three available fully-

qualified flight-spare Mössbauer instruments. 

Instrument Description: MIMOS II [1] consists 

of a sensor head (Fig. 1) and an electronics board. The 

sensor head can be mounted on e.g. a robotic arm (see 

Fig. 2 for a MER instrument) and needs to be brought 

in physical contact with the sample to be analyzed. No 

sample preparation is necessary. The sensor head car-

ries the radiation source (57Co, halflife 270 d) and de-

tector system, and has a volume of 50×50×90mm³. The 

electronics board holds data acquisition and instrument 

control units (CPU + FPGA), voltage converters, and 

electrical and data interfaces to the spacecraft. It is 

100×160×25mm³. The whole system including con-

necting cables weighs <500 g, power consumption is 

4W during data acquisition, and data product size per 

analysis is 512 kBytes (4 Mbit). 

Asteroid Redirect Mission: ARM consists of the 

Asteroid Redirect Robotic Mission (ARRM) to be fol-

lowed by the Asteroid Redirect Crewed Mission 

(ARCM). ARRM will visit a larger than ~100 m diam-

eter NEA and collect a meter-sized boulder and rego-

lith from its surface. The boulder will be used for a 

gravity tractor asteroid deflection demonstration before 

it will be transported to a stable orbit around the Moon 

where astronauts can explore it and return samples to 

Earth during the ARCM [8]. Asteroid 2008 EV5 has 

been used to support mission design studies but the 

final target asteroid has yet to be selected. Asteroid 

2008 EV5 is probably a CR-type carbonaceous chon-

drite. 

 

Fig. 1. The MIMOS II sensorhead. Credit: University 

of Mainz. 

 
Fig. 2. A MIMOS II sensorhead (Mössbauer) mounted 

on Mars Exploration Rover Spirit’s robotic arm, to-

gether with the Alpha Particle X-ray Spectrometer 

(APXS), the Microscopic Imager (MI), and the Rock 

Abrasion Tool (RAT). Credit: NASA/JPL/Cornell. 
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Mössbauer Investigations Related to ARM and 

NASA Goals: Mössbauer spectroscopy identifies Fe-

bearing mineral phases (e.g., silicates, oxides, and sul-

fides) and Fe oxidation states, and determines the 

quantitative distribution of Fe between mineral phases 

and oxidation states. It also yields insights into magnet-

ic properties. This information is vital to support ARM 

and NASA goals regarding science, planetary defense, 

asteroidal resources and ISRU, as demonstrated by the 

examples given below. 

Science. Asteroid 2008 EV5 is likely a CR carbo-

naceous chondrite on the basis of its reflectance spec-

trum and albedo but could also be a CI, CM, or CK 

chondrite. Such uncertainty is the case for most aster-

oids. This uncertainty in composition can be removed 

by establishing a firm link to a single group of meteor-

ites through knowledge of the geochemical and miner-

alogical composition. Importantly, the MB instrument 

can “see through” more than a millimetre of basaltic 

dust and obtain information on the solid substrate be-

neath. Modal mineralogy or the distribution of Fe2+ in 

the silicate olivine and Fe0 in metal phases can be used 

to differentiate between meteorite groups [9,10], which 

works particularly well when complemented by chemi-

cal composition and/or magnetic susceptibility meas-

urements. For example, using Mars Exploration Rover 

Opportunity’s Alpha Particle X-ray Spectrometer 

(APXS) and Mössbauer spectrometer on Bounce Rock, 

a boulder float at Meridiani Planum, we identified the 

first rock on Mars similar in composition to the sher-

gottite group of meteorites who originated on Mars 

[11]. We also identified and grouped both iron and 

stony meteorites on Mars [12,13], and could establish 

that fragments of the latter encountered by Opportunity 

were most likely paired [13]. 

Carbonaceous chondrites and their parent asteroids 

are particularly interesting targets because they display 

a history of aqueous alteration. The abundance of the 

mixed-valent Fe-oxide magnetite can be used as a trac-

er for the extent of aqueous alteration. Fe-bearing min-

erals and Fe oxidation states can also be used to trace 

the thermal and shock history of meteorites or aster-

oids. Magnetite and metal phases influence the elec-

tromagnetic properties of an asteroid. 

Space weathering can alter the optical spectrum and 

albedo of an asteroid and may thus lead to uncertainty 

when comparing to known groups of meteorites. These 

effects may not be apparent through geochemical 

changes but changes in Fe oxidation states only. The 

Fe0 content of surface fines, for example, is a measure 

of exposure time [14], which may be used to constrain 

the flux of micrometeoroids. At the opposite end, we 

have used the oxidation of metallic Fe in stony meteor-

ites on Mars to demonstrate extremely slow chemical 

weathering rates under the current extremely arid con-

ditions [15]. 

Planetary defense. The knowledge of physical or 

geotechnical properties such as density, porosity, shear 

strength, compressive strength or tensile strength is 

essential for planetary defense purposes. By ascertain-

ing the link between asteroid and correct group of me-

teorites, many of these properties can be obtained from 

the meteorites in collections. A good knowledge of 

mineralogy and Fe oxidation states further enables es-

timating coefficients of thermal expansion or electro-

magnetic properties. Asteroids may have been weak-

ened through thermal and shock events. 

Asteroidal resources and ISRU. Asteroids may be 

used in several ways for in situ resource utilization 

during human exploration. Knowledge of the miner-

alogical compositions helps to assess the radiation pro-

tective properties of asteroidal materials, as well as the 

potential to yield precious water or oxygen. In experi-

ments with lunar regolith, the yield of oxygen that can 

be extracted is directly proportional to FeO content 

[16]. Several oxygen extraction hardware concepts 

were evaluated during two field tests on Mauna Kea, 

Hawaii, in 2008 [17,18] and 2010 [19,20]. MIMOS II 

worked successfully as both a process monitor and a 

prospecting tool. Feedstock would be selected for high 

FeO content and mineral content: Ilmenite is reduced at 

900°C, olivine at 1000°C and all other FeO-bearing 

phases at 1100°C. 
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